Advanced Instrumentation for Neutron Scattering Studies of Nano-Scale Materials

Roger Pynn

Los Alamos National Laboratory

The 1994 Nobel Prize in Physics – Shull & Brockhouse

Neutrons show where the atoms are....

The Success of Neutron Scattering is Rooted in the Neutron's Interactions with Matter

- Nuclear and magnetic interactions of similar strength
- Isotopic sensitivity (especially D and H)
- Penetrates sample containment
- Sensitive to bulk and buried structure
- Simple interpretation provides statistical averages, not single instances
- Wavelength similar to inter-atomic spacings
- Energy similar to thermal energies in matter

All of these apply to studies of nano-materials

Neutron Scattering Complements Other Techniques in Length Scale....

.....and Time Scale

 $Q/Å^{-1}$

Neutron Scattering has Helped Resolve Structural Issues in Nano-Materials

Microstructure in bulk & thin films of complex fluids

Probing Chain Conformation in Thin Films

R.L. Jones, S.K. Kumar, D.L. Ho, R.M. Briber, T.P. Russell, Nature, 1999, 400, 146

Shows a limitation of neutron scattering for nano-science: normally need large samples

Thin films of 25% d-PS & 75% PS spun on to Si wafers. 25 wafers => 250 nm or larger total polymer thickness

Neutron Scattering has Helped Resolve Structural Issues in Nano-Materials

- Microstructure in bulk & thin films of complex fluids
- Magnetic structures of many thin film systems
 - Proximity effects related to the importance of interfaces

New challenges for magnetic neutron scattering

Spin valves

FM - Semiconductor

Lateral structures

Exchange bias

Magnetic films, dimensionality effects

Exchange springs

Exchange coupling

VG from Hartmut Zabel

Vortex State in Thin Films of Magnetic Dots

Shinjo et al., Science **289**, 930 (2000)

Large (\sim 1 μ m) magnetic dots (above) are visible with MFM or neutron reflection. Small (\sim 65 nm) dots are harder to see

65 nm diameter dots spaced ~110 nm apart

- GINS experiment with polarized neutrons
- Determined total moment in vortex state in each dot
- At the limit of today's neutron technology

I.K. Schuller, S.K. Sinha, M. R. Fitzsimmons et al.

Neutron Scattering has Helped Resolve Structural Issues in Nano-Materials

- Microstructure in bulk & thin films of complex fluids
- Magnetic structures of many thin films
 - Proximity effects related to the importance of interfaces
- Atomic arrangements in nano-particles

Neutron PDF Shows that Gold Nano-Particles Appear to have the Bulk Structure

K. Page, T. Proffen (LANL), R. Seshadri and A. Cheetham (UCSB)

Neutron Scattering has Helped Resolve Structural Issues in Nano-Materials

- Microstructure in bulk & thin films of complex fluids
- Magnetic structures of many thin films
 - Proximity effects related to the importance of interfaces
- Atomic arrangements in nano-particles
- Elastic constants of micro-emulsion droplets (NSE)
- Dynamics of stacked membranes (TAS)
- etc

What do we Need to do Better?

- Exploit complementarity of techniques
- Generate pictures not S(Q,E)
 - Couple neutron scattering and advanced computing
 - Prototypes exist for powder diffraction, SANS and quasielastic scattering

Integration of Structural Biology Tools Yields Insight into Enzyme Activation by Calmodulin

Crystallography – structure of the catalytic core of the enzyme and reveals the location of the catalytic cleft.

High field NMR with isotope labeling — high resolution solution structure of calmodulin complexed with its binding domain from the enzyme.

Neutron scattering with isotope labeling – shapes and positions of the Myosin Light Chain Kinase enzyme and calmodulin in the Ca²⁺-calmodulin activated complex.

Use computational modeling based on crystallographic data to determine molecular shapes under various binding conditions

Pictures & Movies are Today's Standard for Nano-Science Research

Today's Route

We need to provide images or movies

Reverse Monte Carlo of CsDSO₄ fitted to diffraction data (McGreevy)

What do we Need to do Better?

- Exploit complementarity of techniques
- Generate pictures not S(Q,E)
- Make better use of the neutrons we have
 - Use the best known technology to optimize instrumentation
 - Develop better neutron focusing devices

Improved Neutron Optics

Pin-hole # Lens

MgF₂ CRL at NIST

18 Å

8.4 Å

Kumakhov lens

Superconducting hexapole lens at RIKEN

Optical Elements Extend the Reach of Neutron Nano-Imagers

IN15 – ILL

KWS-3 – Julich

Focusing torroidal mirrors provide higher intensity and allow smaller values of Q to be reached on SANS & neutron spin echo instruments

What do we Need to do Better?

- Exploit complementarity of techniques
- Generate pictures & movies not S(Q,E)
- Make better use of the neutrons we have
- Design and build better neutron nanoscopes
 - Extend accessible length and time scales
 - Allow nano-length-scales to be reached without loss of neutron intensity that arises from beam collimation, e.g by using the Neutron Spin Echo method
 - Etc (see session chaired by R. Gaehler)

Extension of the NSE Length-Scale Domain

High Angular Resolution Neutron Scattering without Beam Collimation

- Thin, magnetized Ni_{0.8}Fe_{0.2} films on silicon wafers (labelled 1, 2 & 4) are the principal physical components used for this new method.
- High angular resolution is obtained using Neutron Spin Echo.

A 200 nm correlation distance was achieved for SANS

Specular neutron reflection (blue) was separated from diffuse reflection with high fidelity. Black and red data include diffuse scattering

What do we Need to do Better?

- Exploit complementarity of techniques
- Generate pictures & movies not S(Q,E)
- Make better use of the neutrons we have
- Design and build better neutron nanoscopes
- Coordinated research effort on neutron instrumentation
 - Vision a suite of neutron nanoscopes that probe the right length and time scales in weakly scattering samples
 - Possibility exists to optimize the SNS second target station & its instruments for nanoscience and biology if we start soon